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A B S T R A C T   

The common practice of incorporating environmental indices into population models has greatly advanced our 
understanding of ecological systems. Unfortunately, we are increasingly seeing published correlations between 
population indicators and environmental indices breaking down when tested with new data. Examining how the 
correlations among indices change over time could help explain underlying causal mechanisms, which ultimately 
strengthen the basis for prediction of population indicators. For migratory animals such as anadromous salmon 
(Oncorhynchus spp.), the habitat conditions they experience can affect their lifetime fitness and population 
viability. We analyzed 43 freshwater, marine, and climate indices associated with 72 river sites and five coastal 
ecoregions inhabited by Chinook and coho salmon (O. tshawytscha and O. kisutch) in the western USA. Utilizing 
long time series (ranging from 32 to 124 years), we examined spatial and temporal patterns in correlations 
through hierarchical clustering across sites and non-stationarity across time. Individual river sites clustered into 
two Northwest and one Southwest groups. Northwest sites generally showed stronger correlations between 
freshwater and climate indices, while Southwest sites showed stronger correlations within freshwater or within 
marine/climate indices. For a closer examination at shorter periods, we parsed the time series into 10-year 
windows and showed how pairwise correlations changed over time with spring–summer Pacific Decadal Oscil-
lation index in the Northwest and with spring flow in the Southwest. Stronger correlations across multiple indices 
tended to occur when large-scale climatic events (e.g., Oceanic Niño and Pacific Decadal Oscillation indices) 
were in-phase, and phase transitions (e.g., from positive to negative) occurred in the same 10-year window. In a 
third analysis, we assessed how well indices provided unique vs. confounding/complex information and had 
consistent vs. varying relationships based on the mean and variance of 10-year correlations. Across index types, 
the variance in correlations tended to be lowest in marine vs. climate indices, higher among freshwater indices, 
and highest for freshwater vs. marine/climate indices. Yet, the mean strength of correlations for freshwater vs. 
marine/climate indices was still comparable to those among freshwater ones. Overall, identifying time periods 
when correlations tend to change will help interpret historical and projected population indicators. Spatial trends 
in the strength of correlations also indicate that the level of confounding effects among indices can differ 
regionally. We emphasize the importance of knowing the strength and variability of correlations among indices, 
and their representativeness of ecological processes in the context of combined phases of multiple climatic 
indices.   

1. Introduction 

In migratory species, elucidating which environmental factors 
constrain biological processes can be challenging because of strong and 
potentially changing correlations among indices within and across 

habitats (Mueter et al., 2005; Pierce et al., 2008; Faaborg et al., 2010). 
Many environmental indices are correlated through climatic, physical 
and hydrogeographic processes (Leathers et al., 1991; McCabe and 
Dettinger, 1999; Wang et al., 2014), while others are due more to chance 
and are thus statistical artifacts. Understanding functional relationships 
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is important for assessing impacts of climate change and management 
actions to mitigate stressful environmental conditions (NMFS, 2014). 
Clarifying the correlation structure among environmental indices on 
their own, which is the focus of the current study, can help to assess our 
power to detect actual forcing factors and therefore help other studies 
correctly project ecological responses or population indicators under 
alternative environmental conditions. Identifying time periods when 
correlations tend to change is particularly important for improving 
retrospective and projection analyses. 

In addition, understanding the correlation structure among envi-
ronmental indices across habitats is important because of biological 
carryover effects that occur across life stages (Hettinger et al., 2012; 
O’Connor et al., 2014). The habitat conditions in one life stage influence 
an organism’s biological condition, which often affects survival or 
behavior in the next life stage. Carryover effects include physical con-
dition, physiological state, behavior and ultimately survival. Further-
more, similar mechanisms with cumulative effects can result when 
organisms experience similar conditions repeatedly across habitats (e.g., 
temperature effects; Healey, 2011; Martins et al., 2012). If environ-
mental conditions across life stages are correlated, we might not be able 
to differentiate the impacts of environmental factors in different life 
stages, despite management interest in doing so. To assess our power to 
differentiate forcing factors, we first need to characterize the correlation 
structure of environmental indices, including time steps lagged appro-
priately for the migratory animal. 

For anadromous fishes, studying the correlation structure among 
their potential indices would help guide studies on mechanistic linkages 
between environmental conditions and their population indicators. Pa-
cific salmon (Oncorhynchus spp.; e.g., Redfish Lake sockeye salmon 
[O. nerka] and Yukon River Chinook salmon) migrate thousands of ki-
lometers through diverse habitats across freshwater and marine envi-
ronments (Willson and Halupka, 1995; Quinn, 2018). Although marine 
indices have been found to strongly correlate with salmon responses 
(Mueter et al., 2005; Burke et al., 2013; Wells et al., 2016), much 
variation in salmon population dynamics can also be explained by 
freshwater indices (Greene et al., 2005; Crozier and Zabel, 2006). 
Furthermore, these freshwater indices can exert direct effects within a 
life stage and indirect effects in subsequent life stages through influences 
on growth rates and phenology (Crozier et al., 2008). Thus, carefully 
selecting which environmental indices to examine across life stages in 
freshwater and marine habitats can be a nontrivial but vital practice in 
studying organisms with complex life histories. 

An important part in understanding the correlation structure among 
environmental indices encountered by anadromous salmon is the 
spatiotemporal scale of their migrations. Relationships between 
different indices of climate variability that occur over long distances of 
thousands of kilometers, a phenomenon termed teleconnection, are thus 
important to consider. Some recent advances in understanding climatic 
teleconnections between the atmosphere and ocean and across ocean-to- 
freshwater environments are reviewed by Di Lorenzo et al. (2013) and 
Sagarika et al. (2015). However, a comprehensive suite of environ-
mental indices and the spatiotemporal scales relevant to a migratory 
species are often not fully considered in biological studies. Even as these 
studies reflect important understanding in the correlation structure 
among freshwater, marine and climate indices (i.e., within and between 
these types), climatologists and ecologists generally consider a select 
number of environmental indices across broad landscapes. An exami-
nation of patterns among multiple freshwater and marine indices in the 
context of teleconnections would help researchers choose which indices 
to test against salmon population indicators at multiple spatial scales; it 
could help determine which inferences made are likely to be stable over 
time and which may require interpretation of results related to con-
founding factors. 

To be more strategic in selecting and interpreting indices tested 
against migratory animal population indicators, it is necessary to better 
understand the correlations among freshwater, marine, and climate 

indices. We illustrate how the correlation structure can differ across 
space and time on the west coast of the contiguous United States of 
America. First, we examined correlations between pairs of long, multi- 
decadal time series of environmental indices associated with 72 river 
sites, and determined Northwest and Southwest regional patterns. Sec-
ond, to clarify when correlations change, we parsed the time series to 10- 
year time windows. To demonstrate how large-scale marine/climate 
indices can influence specific populations far away, we compared pat-
terns in the two most interior river sites with anadromous fish pop-
ulations in the contiguous western USA, lower Salmon River and the 
Sacramento River. These sites also have among the longest time series, 
which allowed the best assessment of changing correlations over time. 
We focused on interior sites to contrast with previous studies looking at 
coastal sites that are expected to be highly correlated with marine 
conditions simply because of their proximity (Lawson et al., 2004). 
Third, to generalize our guidance on which indices are reliably distinct 
over time, we summarized the mean and variance of 10-year correla-
tions by index type and spatial scale. Because most time series of animal 
population indicators are relatively short and most studies include a 
small number of indicators, exploring how correlation structure among 
environmental indices change across short time frames through the 
entire time series could provide context for interpreting recent trends in 
ecosystems (e.g. latest 5-year trends in Harvey et al., 2017). Our study 
aims to help scientists and decision makers avoid mistaking a direct 
effect for a confounded index and projecting into the future when the 
correlation they discovered is likely to change. 

2. Methods 

2.1. Data 

We examined 72 river sites where Chinook and coho salmon spawn, 
rear, or migrate (StreamNet, www.streamnet.org) that had at least 30 
years of freshwater environmental data (see Table S1 in Supplementary 
Material for metadata). In the marine environment, we delineated five 
coastal ecoregions that fit within the ecoregions of the California Cur-
rent System determined by Spalding et al. (2007). These ecoregions 
represent areas where salmon first enter the ocean after their juvenile 
downstream migration. We included marine indices that encompass 
both the initial conditions salmon encounter near their ocean entry point 
(regional), and across their entire marine stage (large). We grouped 43 
environmental indices into four categories based on index type and 
spatial scale: local freshwater/land (“FWlocal”; Table 1), regional fresh-
water/land (“FWregional”), regional coastal marine (“Mregional”), and 
large-scale marine and climate (“MClarge”). 

In the freshwater environment, we examined 19 indices (see Table 1a 
for descriptions and references). For FWlocal indices, we examined sea-
sonal maximum air temperatures from the Parameter-elevation Re-
lationships on Independent Slopes Model (Daly et al., 2008). We also 
tested seven indices of river flow. The flow time series ranged from 32 
years (water years 1984–2015, Beaver Creek, Oregon), to 124 years 
(water years 1892–2015, Sacramento River, California), and averaged 
85 ± SD 22 years (median of 87 years) across the 72 sites. The FWregional 
indices were represented by seasonal mean air temperature and Palmer 
Hydrological Drought Index for the Northwest and Southwest regions. 
The designation of regions in the current study are based on the 
Northwest (Washington, Oregon and Idaho, USA) and West (California 
and Nevada, USA) regions defined by Karl and Koss (1984). We used air 
temperature because many sites did not have long (>30 years) time 
series of stream temperature data. 

The 14 Mregional indices were seasonal means of sea surface tem-
perature (SST) and indices related to coastal upwelling (see Table 1b for 
descriptions and references). The long-term SST data set at coarse spatial 
resolution (2◦ × 2◦) was the Extended Reconstructed Sea Surface Tem-
perature v3b. The SST data at finer spatial resolution (<0.05◦ × 0.05◦) 
but shorter time series were remotely sensed satellite data from 
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Pathfinder and Multi-scale Ultra-high Resolution satellites. We also 
examined six coastal upwelling/downwelling indices that can indicate 
the phenology and magnitude of bottom-up ecological processes 
(Bograd et al., 2009). 

The MClarge indices were the Oceanic Niño Index in the Niño 3.4 
region, Aleutian Low Pressure Index, Pacific Decadal Oscillation index, 
and North Pacific Gyre Oscillation index (see Table 1b for descriptions 
and references). We compared Niño 3.4 and PDO indices with fresh-
water and coastal marine conditions to look for signs of teleconnections 
within a year Y and even stemming from the previous year Y–1. The 
spatiotemporal range of the correlations could indicate different 
mechanisms of pre-conditioning the habitat before the salmon arrive. 

Because autocorrelation in time series can inflate correlations be-
tween indices, a common practice is to prewhiten data by demeaning, 
detrending and removing autocorrelation (Bayazit and Önöz, 2007). 
However, our goal was not to assign mechanistic relationships among 
indices; rather, it was to elucidate apparent relationships that would 
influence interpretation of biological responses or population indicators. 
Thus, we were more interested in apparent correlations than a pattern of 
residuals. Even so, we explored correlations with prewhitened data, in 
addition to the raw data, in case it affected our conclusions. We found 
similar patterns to those from the raw data and even cases of strength-
ened correlations after prewhitening (e.g., Figs. S1 and S2 in Supple-
mentary Material). Results presented in the rest of this paper are from 
analyses of the raw data as acquired from data sources, and not addi-
tionally prewhitened. 

2.2. Analyses 

2.2.1. Long time series: regional, averaged correlation structure 
To determine which sites had similar patterns of correlations among 

environmental indices, we applied a hierarchical cluster analysis with 
the function hclust (R Core Team, 2019). The distance metric entered in 
the analysis was essentially the complement of the correlation between 
two sites’ among-index correlations (i.e., 1– R). More specifically, we 
used a vector (Zi) for each site i of correlation coefficients following a 
Fisher Z-transformation: 

z = 1
2 ln

(
1+r
1− r

)

= tanh− 1r (Fisher, 1915). This transformation changes 

r correlation coefficients, bounded by –1 and 1, to z correlation co-
efficients that have a normal distribution. This transformation allows the 
variance to be approximately constant for all values of z, instead of 
getting smaller as the r correlation coefficient gets closer to –1 or 1 (see 
Fig. S3 in Supplementary Material). A vector Zi was determined for 11 
FWlocal indices paired to all 43 indices (i.e., 407 separate between-index 
correlations). We then determined the correlation (Ri,j) between vectors 
Zi and Zj for different sites i and j. The distance measures (Di,j) between 
sites were calculated as 1 – Ri,j. Thus, the hierarchical cluster analysis 

was performed using all 43 freshwater and marine indices; but it 
excluded comparisons among regional freshwater, marine, and climate 
indices that would have been repeated among many or all sites (i.e., not 
all 903 between-index correlations possible among 43 indices). The 
optimal number of partitioned clusters was determined using the crite-
rion of Calinski and Harabasz (1974) with the function cascadeKM 
(Oksanen et al., 2019), based on the function kmeans (R Core Team, 
2019). 

For each cluster of sites, we averaged correlation coefficients, r, 
across sites and plotted them in a correlation matrix. As a guide, we 
break down the correlation matrix to submatrices by index type with 
detailed descriptions of hypothesized patterns and references (Box S1 in 
Supplementary Material) that can be compared to our study results. 

We chose to examine correlations directly in this paper, rather than 
with other dimension-reduction or time-series-specific statistical 
methods to keep the results as intuitive as possible, and to reveal any 
dynamics that would affect real organisms (such as temporal autocor-
relation). For example, dynamic factor analysis (Zuur et al., 2003) is 
amenable to examining trends in non-stationary data. But it is limited in 
its ability to examine changing correlations because it assumes constant 
loadings through time. Alternatively, a factor stochastic volatility model 
(Kastner et al., 2017), which is more often applied in the financial 
econometrics field than ecology, can assess changing correlations among 
indices. However, the number of indices we are testing in the current 
study represent a variety of processes across space. A factor stochastic 
volatility model would be better suited for a local study with fewer 
processes at stake. To achieve our heuristic aims, we chose to apply the 
more common and direct comparison of simple correlations. 

2.2.2. Short time series: Changing correlations 
We parsed the time series into consecutive 10-year windows so we 

could visualize when, by how much, and in what direction, correlations 
among indices changed over time. We chose a 10-year window because 
many salmon time series are approximately one to two decades long. 
Relatively few monitoring programs started decades ago, and main-
taining funding for such programs is difficult. 

We looked for periods when changes in correlations occurred across 
sites. We limited our analysis to pairwise comparisons of the full suite of 
local freshwater indices with a single large-scale or regional index 
because our previous step had already shown strong correlation among 
the MClarge indices. Furthermore, upwelling indices and satellite SST 
time series were too short for this analysis. For the Northwest, we chose 
to examine the spring–summer PDO as our representative MClarge index 
because of its association with other indices, its influence on salmon, and 
its long time series (Mantua et al. 1997, Burke et al. 2013, Peterson et al. 
2014). For the Southwest, we chose to examine spring mean flow for 
similar reasons. Its association with other indices has been studied by 
Wang et al. (2014) and is related to regime shifts between dry and wet 

Table 1a 
Freshwater indices.  

Spatial scale Index category Index descriptions Index names Years 

Local (river 
site); 
“FWlocal” 

Maximum air 
temperature 

Seasonal means of monthly maximum air temperature from the 
Parameter-elevation Relationships on Independent Slopes Model 
(PRISM; Daly et al., 2008) 1 

Max. temperature (Win., Spr., Sum., Aut.; 
JFM, AMJ, JAS, OND) 

1895–2015 

River flow Calculated from daily discharge observations from U.S. Geological 
Survey’s National Water Information System 2 (Table S1): seasonal 
means in a calendar year; and 1-day minimum, 1-day maximum, 
and coefficient of variation of daily flow in a water year 

River flow (Win., Spr., Sum., Aut.; JFM, AMJ, 
JAS, OND); Min. flow, WY (Oct–Sept); Max. 
flow, WY;CV of flow, WY 

Various years 
spanning 
1895–2015 

Regional; 
“FWregional” 

Mean air 
temperature 

Seasonal means of monthly indices from National Climate Data 
Center (NCDC) 3 

Mean temperature (Win., Spr., Sum., Aut.; 
JFM, AMJ, JAS, OND) 

1895–2015 

Drought Seasonal means of monthly Palmer Hydrological Drought Index 
(PHDI) from NCDC 4 

Drought Index (Win., Spr., Sum., Aut.; JFM, 
AMJ, JAS, OND) 

1895–2015  

1 www.prism.oregonstate.edu, accessed 2016/12/13. 
2 http://waterdata.usgs.gov/nwis/, accessed 2017/01/03. 
3 http://www7.ncdc.noaa.gov/CDO/cdo, accessed 2017/04/20. 
4 http://www7.ncdc.noaa.gov/CDO/cdo, accessed 2017/04/20. 
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conditions driven by teleconnections. 
To demonstrate that these relationships can occur over vast dis-

tances, we showed detailed results for two interior locations: lower 
Salmon River, Idaho in the interior Northwest, and Sacramento River at 
Red Bluff Diversion Dam, California in the interior Southwest. In these 
case studies, the bivariate correlation coefficients for 10-year windows 
are represented in the bubble plots. For each bivariate comparison, we 
report the mean and variance of the 10-year correlation coefficients, as 
well as the first-order autocorrelation (function arima; R Core Team, 
2019) and correlation coefficients for the complete time series. The site 
level is where most biologists conduct work related to their target 
population, and thus these results exemplify the most tangible indices in 
our study. 

2.2.3. Strength and variability in correlations by index type 
In this section, we compared the mean and variability of correlations 

among FWlocal, FWregional, Mregional and MClarge index types. Across the 
10-year windows, we categorized the z correlation coefficients among 
indices as low vs. high mean and low vs. high variance (Table 2). Indices 
that have both low mean (|mean z correlation coefficient| < 0.4) and 
low variance in z correlation coefficient (σ2 < 0.15) provide unique 
information and thus would be favorable candidate predictors. Indices 
with consistently lower levels of correlation would cause fewer multi-
collinearity issues in modeling (Møller and Jennions, 2002; Dormann 
et al., 2013). There would be a lower risk of missing mechanistic re-
lationships because of confounding effects. Indices that have at least 
moderate correlation (|mean z correlation coefficient| > 0.4) and low 
variance in z correlation coefficient (σ2 < 0.15) represent pairs in which 
collinearity may be an issue and we would interpret results more 
cautiously. When indices are correlated, there may be another index that 
truly represents the underlying causal mechanism. Although, when we 
consider the perspective of the fish, both environmental indices (e.g., 
river temperature and flow) may actually be experienced in manners 

Table 1b 
Marine and climate indices.  

Spatial scale Index 
category 

Index 
descriptions 

Index names Years 

Ecoregional; 
“Mregional” 

Sea surface 
temperature 

Seasonal means 
of Extended 
Reconstructed 
Sea Surface 
Temperature 
V3b5 

ERSST (Win., 
Spr., Sum., 
Aut.; DJF, 
MAM, JJA, 
SON) 

1854–2015 

Sea surface 
temperature 

Seasonal means 
of sea surface 
temperature, 
Pathfinder6 and 
Multi-scale 
Ultra-high 
Resolution7 

satellite data 

Satellite SST 
(Win., Spr., 
Sum., Aut.; 
JFM, AMJ, 
JAS, OND) 

1982–2015 

Coastal 
upwelling/ 
downwelling 

Indices were 
spring transition 
index (STI), end 
and length of 
upwelling 
season (END 
and LUSI), total 
upwelling 
magnitude 
(TUMI), and 
total 
downwelling 
magnitude 
(TDMI), and the 
North Pacific 
High pre- 
conditioning 
Cumulative 
Upwelling Index 
(pCUI)8 at four 
different Pacific 
Fisheries 
Environmental 
Laboratory 
stations (39◦N, 
125◦W; 42◦N, 
125◦W; 45◦N, 
125◦W; and 
48◦N, 125◦W) 

Upwelling/ 
downwelling 
indices (STI, 
END, LUSI, 
TUMI, TDMI, 
pCUI) 

1967–2015 

Large-scale; 
“MClarge” 

Niño-3.4 Oceanic Niño 
Index in Niño 
3.4 region9; 
means from 
Jan–Jun and 
Jul–Dec means 
in years Y − 1 
and Y 

Niño 3.4 
(Win–Spr 
[Jan–Jun], Y- 
1; Sum–Aut 
[Jul–Dec], Y- 
1; Win–Spr; 
Sum–Aut) 

1870–2015 

Aleutian Low 
Pressure 
Index 

Index10 of the 
Aleutian Low 
pressure system 
from Dec, Y − 1 
through Mar, Y 
in the north 
Pacific, 
calculated as the 
mean area 
(km2) with sea 
level pressure ≤
100.5 kPa and 
expressed as an 
anomaly from 
the 1950–1997 
mean. 

ALPI (Win.; 
Nov–Mar) 

1900–2015 

Pacific 
Decadal 
Oscillation 
Index 

Index of sea 
surface 
temperature 
pattern in the 
North Pacific11; 
means from 

PDO 
(Spr–Sum 
[Apr–Sep], Y- 
1; Aut–Win 
[Oct–Mar], Y- 

1900–2015  

Table 1b (continued ) 

Spatial scale Index 
category 

Index 
descriptions 

Index names Years 

months Apr–Sep 
and Oct–Mar in 
years Y and Y −
1) 

1; Spr–Sum; 
Aut–Win) 

North Pacific 
Gyre 
Oscillation 
Index 

North Pacific 
Gyre Oscillation 
Index12; (Dec- 
Mar mean in 
years Y and Y-1) 

NPGO (Win.; 
Dec-Mar) 

1950–2015  

5 Smith et al. (2008), in which ERSST v3b does not include satellite data 
compared to ERSST v3; data from http://cci-reanalyzer.org/reanalysis/monthly 
_tseries/, accessed 2017/01/03. 

6 Kilpatrick et al. (2001); SST, Pathfinder Ver 5.0, Day and Night, Global, 
Science Quality, Monthly Composite, 1982–2009, dataset name “erdPHsstam-
day” from http://coastwatch.pfeg.noaa.gov/erddap/index.html, accessed 
2015/02/03. 

7 Chin et al. (2017); Multi-scale Ultra-high Resolution (MUR) SST Analysis 
fv04.1, Global, 0.01◦, Monthly, 2003–2015; dataset name “jplMURSST41mday” 
from http://coastwatch.pfeg.noaa.gov/erddap/index.html, accessed 2016/12/ 
30. 

8 calculated following Bograd et al. (2009) and Schroeder et al. (2013), with 
data from http://www.pfeg.noaa.gov/products/PFELData/upwell/daily/, 
accessed 2017/05/09. 

9 Peterson et al. (2014); https://www.esrl.noaa.gov/psd/gcos_wgsp/Timese 
ries/Nino34/, acccessed 2017/01/04. 

10 (Wallace and Gutzler, 1981; Trenberth and Hurrell, 1994); data from 
http://www.beringclimate.noaa.gov/data/ index.php, accessed 2017/01/04. 

11 Mantua et al. (1997); data from research.jisao.washington.edu/pdo/, 
accessed 2017/01/04. 

12 Di Lorenzo et al. (2008); data from http://www.o3d.org/npgo/, accessed 
2017/01/04. 
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that influence their responses. Finally, indices that have high variance in 
z correlation coefficient (σ2 > 0.15) may indicate spurious relationships 
and also require more careful interpretation. 

3. Results 

3.1. Long time series: regional, averaged correlation structure 

The correlation structure of the 43 indices from each site clustered 

into broad Northwest and Southwest regions (Fig. 1). The occurrence of 
colored and white spaces in the correlation matrix (Fig. 2) shows that 
many correlations exist among the indices, but that not all indices are 
correlated to each other. These correlations, which are averaged across 
sites within each NW/SW cluster, revealed some distinguishing patterns. 
For the NW1 sites, there were strong correlations between freshwater 
and marine/climate indices (submatrices E and F; upper triangle in 
Fig. 2). For the NW2 sites, there was a lack of correlations between flow 
and other indices that are present for NW1 sites (lower portion of sub-
matrices A, E and F; Fig. S4 in Supplementary Material). For SW sites, 
there were correlations among freshwater indices and correlations 
among marine and climate ones (submatrices A, B and D; lower triangle 
in Fig. 2). There were also some correlations between flow and Mregional 
indices (submatrix F; Fig. 2) that are not apparent in the NW sites. 
Overall, our results showed that temperature-related freshwater indices 
were closely correlated with large-scale marine/climate indices in the 
Northwest, whereas flow-related indices were closely correlated with 
marine indices in the Southwest. These patterns are generally consistent 
with existing theories of underlying climatic and physical processes 
across long distances as described in greater detail in Box S1 in the 
Supplementary Material. 

The number of cases in which | r | ≥ 0.3 (i.e., colored in Fig. 2), or | 
r | ≥ 0.5, differed between the NW1 and SW sites and by index type. The 
mean correlations across NW1 sites generally showed a larger number of 
and stronger correlations between freshwater and marine/climate 
indices than in SW sites (respectively, 44 vs. 28 index pairs with | r | ≥
0.3; and 6 vs. 0 index pairs with | r | ≥ 0.5; Fig. 2, submatrices E and F). 
The opposite pattern existed among marine and climate indices 
(Northwest and Southwest respectively, 67 vs. 87 index pairs with | r | ≥
0.3; and 36 vs. 49 index pairs with | r | ≥ 0.5; Fig. 2, submatrices B and 
D). We describe these correlations in greater detail (Box S2 in Supple-
mentary Material) for each lettered submatrix of Fig. 2 and compare to 
predicted patterns (Box S1 in Supplementary Material). 

Table 2 
Interpretation of categories of low/high mean of z correlation coefficients and 
low/high variance (σ 2) of z correlation coefficients across the 10-year moving 
window times series of environmental indices. Low correlation is defined as | 
mean z| < 0.4 and high correlation is defined as having |mean z| > 0.4. Low 
variance of z is σ2 

< 0.15 and high variance of z is σ2 
> 0.15.   

Mean 

Low (<0.4) High (>0.4) 

Variance High 
(>0.15) 

Category B. Noisy 
information, low 
correlation: same as 
Category A, but careful 
interpretation 
recommended because of 
occasional high correlation 

Category D. Noisy 
information, high 
correlation: same as 
Category C, but careful 
interpretation 
recommended because of 
occasional low correlation 

Low 
(<0.15) 

Category A. Unique 
information: both indices 
can be tested and 
distinguished in linear 
models, with less risk of 
confounding effects 

Category C. Confounding 
and complex effects: each 
index can be separately 
tested, but caution is 
needed in conclusions; 
indirect effects may arise 
due to unknown true 
mechanisms; complex 
effects may arise because 
both indices are 
experienced by fish  

Fig. 1. Map of sites in the freshwater environment and coastal ocean ecoregions of the California Current Ecosystem. A hierarchical cluster analysis was run on a 
distance metric representing correlations of each local freshwater index against all 43 environmental indices. Sites grouped into three clusters are represented by cool 
colors in the Northwest (blue triangle, NW1; purple circle, NW2) and a warm color in the Southwest (orange square; SW). 
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3.2. Short time series: Changing correlations 

We delved deeper into the correlative structure by parsing the time 
series into 10-year windows. We observed correlations that spanned 
periods of strongly negative, strongly positive, and weak correlations 
(for example Fig. 3, and Fig. S5, in Supplementary Material). The 
changes in climate indices that are in-phase in one direction to in-phase 
in the other direction (i.e., both negative to both positive, or both pos-
itive to both negative; Fig. 3) are important types of in-phase transitions 
to keep in mind when interpreting correlations among indices. 

Across sites, we observed periods of stronger mean correlations of 
spring–summer PDO with all other indices (Fig. 4). Stronger periods of 
correlations were also observed between spring flow and all other 
indices (Fig. 5). Northwest sites generally showed stronger correlations 
with spring–summer PDO than Southwest sites (Fig. 4). The 10-year 
windows showing stronger correlations across sites tended to match 

the windows when both Niño 3.4 and PDO indices were in-phase posi-
tively and negatively at separate points within a 10-year window 
(Fig. 3). In contrast, periods of stronger correlations between the mean 
spring flow and other indices were more apparent across sites in the 
Southwest than Northwest (Fig. 5). The stronger relationships with the 
PDO index in the Northwest and with flow in the Southwest support our 
findings in the long time series analysis (Fig. 2). 

In the case study with lower Salmon River, the mean spring–summer 
PDO showed stronger trends of correlations with other indices in the 
following 10-year windows: 1925–34, 1975–84 (marine and climate 
only), 1995–2004, and 2005–14 (Fig. 6). The 1925–34 window showed 
that the mean spring–summer PDO was more correlated with ALPI, SST, 
air temperature, drought, and flow indices than other time windows. In 
contrast, the 1975–84 window had a linear trend in the mean spring-
–summer PDO over time, and there were generally higher correlations 
between the PDO index and various marine and climate indices. The 

Fig. 2. Correlation matrix of freshwater, marine, and climate indices, representing mean correlations across sites by NW1 (upper triangle) and SW (lower triangle) 
cluster of sites. For a comparison between NW1 and NW2 clusters, see Figure S4 in Supplementary Material. Correlation coefficients of colored squares legible if 
viewed digitally and zoomed in. 
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1995–2004 and 2005–14 windows showed that stronger correlations 
were with flow, temperature, and SST indices. Notably, the correlations 
with flow and temperature indices changed from positive to negative in 
these last two decades. Another notable change is that the mean 
spring–summer PDO index was strongly correlated with upwelling 
indices in 1975–84 and 1985–94 windows, but then was correlated with 
NPGO in 1995–2004 and 2005–14 windows. Even in a site-specific case 
study, we are seeing many trends of changing correlations across 10- 
year windows. 

We note that some site-specific differences can occur. The 1955–64 
window showed stronger correlations across many Northwest sites, but 
not in the lower Salmon River (Fig. 4). Strong correlations associated 
with the lower Salmon River occurred in 1925–34, 1995–2004, and 
2005–14 (Fig. 6), which correspond to many other Northwest sites 
(Fig. 4). 

For the Sacramento River, the local mean spring flow was more 
strongly correlated with other indices of flow, drought, and maximum 
air temperature indices, than with marine and climate indices (Fig. 7). 
Thus, this local freshwater index was more representative of other 
freshwater indices than marine and climate indices. The periods when 
spring mean flow was more strongly correlated with other freshwater 
indices were 1915–24, 1925–34, 1975–84, 1995–2004, and 2005–14 
windows. The periods of higher correlations with spring mean flow in 
the Sacramento River (Fig. 7) were similar to patterns across sites 
(Fig. 5). 

Some pairs of indices in the Sacramento River showed correlations 
that changed between negative and positive values across the 10-year 
windows (Fig. 7). Examples include correlations of mean spring flow 
with fall maximum temperature, LUSI and END upwelling indices, and 
spring–summer ERSST indices. In contrast, the TDMI upwelling index 
was consistently negative, and we see this negative correlation in the 
long time series correlation matrix (Fig. 2). 

3.3. Strength and variability in correlations by index type 

The temporal trends (i.e. correlations with year) showed weaker 
correlations than those among index types (Fig. 8a). The z correlation 
coefficients were close to 0, averaging between –0.25 and 0.25 and 
having relatively high variances centering around 0.07 and 0.2. These 
results show that ten-year windows are too short to detect linear trends 
of climate change, but are expressions of climate-related decadal 
oscillations. 

In contrast, Mregional and MClarge indices generally had the strongest 
mean z correlation coefficients, with some>0.75 (equivalent to r > 0.64) 

in absolute value (Fig. 8c). This result matches the strong r values we 
observed in the correlation matrix with long time series (Fig. 2). It also 
matches the correlations across 10-year windows with spring–summer 
PDO (Fig. 6). 

The variances of z differed among index types. Many Mregional and 
MClarge index pairs had low variances with σ2 < 0.1 (Fig. 8c); but some 
also had high variances, a number of which had among the highest (σ2 ≈

0.3). Among FWlocal and FWregional indices (Fig. 8b), few index pairs had 
σ2 < 0.05. The variance of z was generally greater between (Fig. 8d) than 
within index types (Fig. 8bc). Yet, the z correlation coefficients of FWlocal 
and FWregional vs. Mregional and MClarge indices (Fig. 8d) were comparable 
and generally greater than those of FWlocal and FWregional indices 
(Fig. 8b). 

Index pairs across the categories of low/high mean vs. low/high 
variance of z correlation coefficients (Table 2) occurred at similar pro-
portions across the Northwest and Southwest (Fig. 9). Most cases of 
index pairs were of low correlations across all index types (categories A 
and B, Table 2). Few cases of high mean and high variance of z corre-
lation coefficients (category D, Table 2) occurred, and were generally for 
correlations among MClarge and Mregional indices. A small proportion of 
cases of low but variable z correlation coefficients (category B, Table 2) 
occurred among MClarge indices. Generally, MClarge indices were either 
consistently correlated (high z, category C) or not (low z; category A). 
There were greater proportions of cases of high mean and low variance 
of z correlation coefficients (category C, Table 2) for large-scale indices 
(Fig. 9a) than for local-scale indices (Fig. 9b). 

Some differences still occurred between the two regions. The 
Southwest showed a greater proportion of cases with high correlations 
among MClarge, Mregional, and FWregional indices (Fig. 9a) and between 
FWlocal and Mregional indices (Fig. 9b). In contrast, the Northwest pro-
portionally showed more cases of high and consistent z correlation co-
efficients between FWlocal and MClarge indices (Fig. 9b). These results are 
consistent with the teleconnection-related correlations in the Northwest 
and the coastal-marine-related relationships in the Southwest we 
observed in the correlation matrix (Fig. 2) and across 10-year windows 
(Figs. 4 and 5). Furthermore, the NW2 sites showed low proportions of 
Categories C and D (high mean of z correlations) between FWlocal and 
other index types (Fig. 9b). This result also corresponds to the lack of 
correlations between flow and other FWlocal, FWregional, Mregional and 
MClarge indices observed in the NW2 sites (Fig. S4 in Supplementary 
Material). 

Fig. 3. Correlation coefficients for Niño 3.4 and PDO indices across 10-year windows (separated by vertical lines). Area of neutral values for PDO and Niño 3.4 
indices is represented by the gray shading. The indices are in-phase positively when their values are > 0.5 and are in-phase negatively when their values are < − 0.5. 
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Fig. 4. Mean absolute values of correlation coefficients across pairs of indices for each site and each 10-year window of data, labelled with the starting year. Pairs of 
indices are between the spring–summer PDO index and local freshwater indices. 
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Fig. 5. Mean absolute values of correlation coefficients across pairs of indices for each site and each 10-year window of data. Pairs of indices are of the mean spring 
monthly river flows against the local freshwater indices, regional ERSST, and large-scale climate indices. 
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Fig. 6. Bubble plot representing correlation coefficients across 10-year windows (labelled with starting year) of all environmental indices examined in current study 
against the mean spring–summer PDO index for the lower Salmon River. First-order autocorrelation coefficients and long-term r correlation coefficients are reported 
for whole time series for descriptive purposes. *The winter-spring Niño 3.4 index above shows correlation coefficients with spring-summer PDO that correspond to 
those in Fig. 3. 
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Fig. 7. Bubble plot representing correlation coefficients across 10-year windows of all environmental indices examined in current study against mean spring mean 
flow for Sacramento River at Red Bluff Diversion Dam. First-order autocorrelation coefficients and long-term r correlation coefficients are reported for whole time 
series for descriptive purposes. 
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4. Discussion 

The study of environmental indices in relation to migratory animal 
population indicators intersects multiple climatological and ecological 
perspectives. This aggregate set of processes can be challenging to ac-
count for in statistical models. Nonetheless, understanding the general 
patterns in correlations among freshwater, marine, and climate indices 
through time can help guide the choices we make when selecting spe-
cific indices to test against salmon population indicators and in inter-
preting results (Fig. 10). Our study showed that the correlation structure 
differed regionally (Fig. 10a), at certain periods of time (Fig. 10b), and 
by index type (Fig. 10ab). 

We begin our discussion with two perspectives of how to interpret 
correlations across habitats and life stages. These perspectives can be 
important as we consider regional patterns of teleconnections, identify 
periods of stronger correlations, and become cognizant of the implica-
tions elicited by non-stationarity. A detailed account of correlations 
among freshwater, marine, and climate indices is particularly important 
in anadromous fishes. We thus delve into these details and then finish by 

discussing our study in context of improved data quality in the future. 

4.1. Teleconnections and cross-life-stage effects 

We can interpret the correlations among environmental indices in 
two different ways. In one perspective, the correlations represent how 
teleconnections setup the conditions that migratory salmon experience 
across habitats. In the other, the correlations represent the carryover (or 
cross-life-stage) and cumulative (or repeated) biological effects. Both 
perspectives can co-exist. Still, a salient difference is that the former is 
climate-centric and can represent multiple local conditions, while the 
latter is fish-centric and emphasizes biological effects. 

The most prominent signs of teleconnections that we detected in our 
study were from the large-scale climate indices of Niño 3.4, ALPI and 
PDO. They were generally correlated with sea surface temperatures, 
total downwelling magnitude index and pre-conditioning coastal up-
welling index. These large-scale indices influence the coastal conditions 
when Chinook and coho salmon migrate to sea in spring and summer. 
These large-scale indices also correlate with winter air temperature and 

Fig. 8. Variance and mean of z (Fisher Z-transformation of r correlation coefficient) across the 10-year windows of data by environmental index types for all bivariate 
comparisons of the 44 indices (including year as an index) at all 72 sites. See Figures S6 and S7 in Supplementary Material, for correlations untransformed and for 
correlations using prewhitened data, respectively. 
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spring flow in the freshwater environment. Thus, one large-scale index 
that exerts teleconnections to local conditions could be a good predictor 
of salmon responses through a large number of specific mechanisms. 

In the second perspective, a biological emphasis is placed on carry-
over and cumulative effects. The habitats salmon pass through sequen-
tially are connected through physical processes, so fish can experience 
similar conditions across life stages. Correlations existed among winter- 
spring temperatures, spring-summer flows, and spring-summer sea 
surface temperatures. Thus, from the juvenile rearing habitat, through 
the downstream-migrating fish habitat, and into the early ocean envi-
ronment, salmon experience similar conditions that may have com-
pounding effects. Given the potential importance of cumulative effects, 
even if each of their single effects is small, these may have implications 
on predetermined high bars of variance explained between single 
environmental indices and population indicators (e.g., R2 > 0.5 in stock 
assessments; Møller and Jennions, 2002; Satterthwaite et al., 2019). 

Factors with less variance explained in any one of the life stages can still 
be important when considered cumulatively and as a whole across 
multiple life stages. 

This leads to questions of how we can explicitly characterize carry-
over and cumulative effects and the appropriate lagging of indices. 
Given a particular research study, the spatial and temporal scales of the 
population indicator investigated can be used to infer the appropriate 
scales of environmental indices. We note that in our current study, we 
did not examine salmon population indicators. Even so, we found that 
correlations among indices lagged only a season or two were greater 
than those lagged a year. Thus, correlated seasonal indices will be 
important to consider when setting up analyses and interpreting results. 
For example, increased river temperatures near critical thresholds can 
strongly affect successful spawning by adults, incubation of salmon eggs, 
and development of juveniles (Beechie et al., 2013; Martin et al., 2017). 
Similarly, cross-seasonal warm conditions in both freshwater and 

Fig. 9. Proportion of cases of index type comparisons in categories of high and low mean z and variance of z (see Table 2) across all sites within each of the NW1, 
NW2, and SW clusters of sites for (a) large-scale indices and (b) local-scale indices. Index types are: MClarge = climate, large-scale; Mregional = marine, regional coast; 
FWregional = freshwater, regional-scale; FWlocal = freshwater, local-scale. 
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Fig. 10. Decision tree for choosing freshwater, marine, and climate indices as predictors to examine further for migratory species responses. The two main decisions 
are based on (a) region of study site and (b) length of time series and timing of phase transitions. MClarge = climate, large-scale; Mregional = marine, regional coast; 
FWregional = freshwater, regional-scale; FWlocal = freshwater, local-scale. 
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marine systems can result in a warm winter for eggs, warm and low flow 
conditions in the spring and summer for fry and parr, and low food re-
sources from spring through fall for smolts entering the ocean. Other 
migratory species may experience similar stresses across life stages. 

In particular, correlations with wintertime conditions can relate to 
both teleconnections and cross-life-stage biological effects. Our study 
findings support the importance of wintertime as a season linked to 
teleconnections and environmental conditions (Hamlet and Lettenma-
ier, 1999; Di Lorenzo et al., 2013; Tamaddun et al., 2017) that juvenile 
Chinook and coho salmon experience. The winter season indices of ALPI, 
PDO, NPGO, and pre-conditioning coastal upwelling index (Di Lorenzo 
et al., 2013; Schroeder et al., 2013; Heyer et al., 2017) setup conditions 
that the fishes experience in winter through summer as they rear in 
freshwater and migrate to marine environments. Winter temperatures 
and precipitation are also conditions salmon experience that correlate 
with other conditions in subsequent life stages, such as spring and 
summer flow and sea surface temperature indices. These environmental 
conditions can influence their growth, migration timing and survival in 
the freshwater and marine environments (Beer and Anderson, 2013; 
Munsch et al., 2019). 

Determining whether the indices represent pre-conditioning pro-
cesses and/or biological effects across life stages is important. This could 
change our expectations of how well large-scale and local indices predict 
salmon population indicators depending on whether indices maintain 
similar correlations in the future. If the indices are correlated and un-
changing, we might be looking in the wrong place for mechanistic links. 
That is, they might still predict population responses, but the mecha-
nistic basis might be mis-identified and mitigative actions would be 
ineffective. Furthermore, our choices and interpretations of indices will 
depend on how the correlations among indices are expected to change 
by region, site, length of time series, and specific years. 

4.2. Spatial and temporal patterns of correlations 

The major spatial patterns relevant to the correlations among envi-
ronmental indices in our study appeared at the regional scale (i.e., 
Northwest/Southwest; Fig. 10a). These regional scales span approxi-
mately 600–1000 km, and likely represent teleconnections that include 
relationships between the El Niño-Southern Oscillation (ENSO) index 
and air temperature, precipitation, and floods (Ward et al., 2014; Heyer 
et al., 2017). Our study showed overall stronger correlations of winter 
and spring air temperature and river flow with marine/climate indices 
in the Northwest than the Southwest. In the Southwest, we did not detect 
strong correlations of flow and drought with climate indices. 
Freshwater-related indices do correlate with coastal conditions (Sagar-
ika et al., 2015; Heyer et al., 2017), which we observed even in our case 
study of Sacramento River at Red Bluff Diversion Dam. Moreover, any 
clustering nested within these two regions did not appear to be driven at 
the scale of ocean polygons. Other studies have detected correlations 
among population-specific salmon survival in the marine environment 
that correspond to a smaller spatial scale of 350–450 km (Kilduff et al., 
2014). We did detect two clusters of sites nested within the Northwest 
region, which appeared to be driven by relationships with local fresh-
water indices. Largely, the correlative patterns among the indices in our 
current study spanned Northwest/Southwest regions. 

Stronger 10-year correlations among freshwater, marine, and 
climate indices tended to occur when PDO and ENSO indices were in- 
phase (Fig. 10b). The correlations across indices were particularly 
apparent when they were positively in-phase at one time and negatively 
in-phase at another time within the same 10-year window (Figs. 3–7). 
Thus, strong teleconnections that drive physical processes in a similar 
direction and with sufficient contrast of conditions within the time series 
appear to be needed for correlations across multiple environmental 
indices. Combined effects of PDO and ENSO, when they are in-phase or 
out-of-phase, have also been observed globally across the dry-wet scale 
of precipitation (Wang et al., 2014). 

We did not always observe these same trends of higher correlations 
during the positive and negative in-phase occurrences (e.g. not observed 
in the 1985–1994 or 1995–2004 windows for some sites; Fig. 4), 
although this may be an artefact of when the 10-year windows were set. 
In additional analyses, when we shifted the beginning of the time win-
dows by 5 years, we still found higher correlations matching periods of 
positive and negative in-phase occurrences (data not shown). Thus, 
statistical limitations given the length of the time series and when the 
data were collected can play an important role on conclusions. 

In the marine environment, exceptions to higher correlations when 
climate indices are in-phase may also be due to local conditions such as 
local wind forcing. Fiedler and Mantua (2017) observed times of mis-
matches between sea surface temperature anomalies in the California 
Current System and the Niño-3.4 region. In the California Current Sys-
tem, local forcing can dominate in its northern extent, while remote 
forcing can be more important in its southern extent (Frischknecht et al., 
2015). 

It is important to note that there are many interwoven processes in 
the atmosphere and our predictions of environmental conditions cannot 
always depend on a few teleconnections. Other teleconnections such as 
the Pacific North American (PNA), West Pacific (WP) patterns, North- 
Atlantic Oscillation (NAO), and Eastern Atlantic (EA) exist; and the 
multiplicity of their influences can obscure any effects generally ex-
pected on ENSO patterns (Wise et al. 2015). The PNA can drive patterns 
of temperature and precipitation (Leathers et al., 1991). In a positive 
phase of the PNA, there is an enhanced Pacific Ocean jet and meridional 
flow that can propel dry west regional patterns, while its negative phase 
forces wetter conditions. A high subtropical phase of the Western Pacific 
can bring wet conditions into California, and its low subtropical phase 
can produce wet conditions in northern Rockies. Also, the North- 
Atlantic Oscillation can shape the patterns of snowmelt (Myoung 
et al., 2017). Thus, other teleconnections can weaken or strengthen 
correlations among environmental indices even when ENSO and PDO 
indices are in-phase. 

4.3. Correlations among index types 

4.3.1. Freshwater indices 
In our study, the correlations among freshwater indices were 

generally weaker than those among marine and climate ones, and were 
thus capturing non-redundant information. Flow in particular had the 
potential of differentiating between a larger number of hypotheses than 
is possible in the marine environment. This seems to be the case even if 
we used a small number of flow indices compared to the hundreds 
available for hydrologic classification (Olden et al., 2012). 

A few reoccurring correlations across sites were still detected in our 
study: winter or spring temperature with spring or summer flow; 1-day 
minimum flow with summer flow; 1-day maximum flow with fall flow; 
and coefficient of variation of flow with 1-d maximum flow. But as 
climate change progresses and affects the hydrologic timing of freshets 
and the variability of discharge, the correlations among specific flow 
indices are expected to change and in turn affect fish populations (Déry 
et al., 2012; Ward et al., 2015). As freshwater time series get longer, and 
as the climate continues to change, it will be important to identify and 
understand relationships among indices when selecting which ones to 
test against animal population indicators. 

4.3.2. Marine and climate indices 
Strong correlations occurred among marine/climate indices, likely 

because of ocean-atmospheric processes and strong local physical con-
nections in ocean circulation. In our study, a number of the upwelling 
indices correlated with wintertime climate indices of ALPI and NPGO, 
but also with PDO and Niño 3.4 indices in other seasons. In the winter 
season, we also observed that coastal upwelling indices tended to be 
most strongly correlated with sea surface temperature indices. The 
correlations we detected likely reflect complex processes involving 
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large-scale and local forcing. For example, in a separate study, a prin-
cipal components analysis of monthly upwelling indices revealed winter 
and summer as dominant seasonal modes that respectively matched 
multi-decadal processes and high-frequency variability; these seasonal 
modes were associated with indices of growth and reproduction of 
different fish and bird species in the California Current Ecosystem (Black 
et al., 2011). 

Longer-term changes in the phenology of coastal marine conditions 
can also occur. Years with El Niño conditions showed delayed and weak 
upwelling in the central California Current Ecosystem, while La Niña 
years showed the opposite (Bograd et al., 2009; Jacox et al., 2015). Also, 
there were later and shorter upwelling seasons (generally March 
through August) in northern stations compared to southern stations in 
the California Current Ecosystem. 

In the last few decades, a fundamental change in correlation among 
some marine and climate indices occurred that involve PDO and NPGO 
indices (Sydeman et al., 2013; Litzow et al., 2018). Similar to these other 
studies, we detected a change from the 1985–94 to the 1995–2004 
windows: the spring–summer PDO index was correlated to upwelling 
indices, but then changed to be correlated with NPGO. In relation to 
salmon survival, strong associations with upwelling were found in these 
earlier decades (Logerwell et al., 2003; Scheuerell and Williams, 2005), 
but stronger associations with NPGO were found in more recent decades 
(Kilduff et al., 2015). It is important to interpret relationships of salmon 
responses given the changing correlations among environmental indices 
because their variances are changing over time. In our study, the cor-
relation between spring–summer PDO and the total upwelling magni-
tude along Washington coast stayed strong through the 1995–2004 
window, but many of the other upwelling indices had nearly zero cor-
relation (Fig. 6). The PDO index is in itself not a biological index that 
directly affects salmon responses; rather, it was correlated to biological 
and ecological processes such as metabolic rates, prey availability and 
predation risk historically (Mantua et al., 1997; Peterson et al., 2014). 
The PDO index could thus be regarded as a latent variable of ecological 
processes in these earlier decades. Increased importance of other indices 
to salmon, such as the NPGO index, may signal fundamental changes in 
relationships among marine and climate indices (Litzow et al., 2018). 
Changing relationships among the conditions that constitute climate 
indices are gaining greater awareness, especially in the context of 
indices that are primarily statistical or that are representative of envi-
ronmental conditions driving ecological patterns (Litzow et al., 2020). 

4.3.3. Freshwater vs. Marine and climate indices 
In addition to the NW1 regional pattern driven by correlations be-

tween large-scale climate indices and local conditions, we found a 
divergence of the NW2 cluster of sites. The divergence was driven 
largely by the presence/absence of correlations between flow and other 
indices, and we suggest three explanations. First, dams can drastically 
alter river flows, and may have been involved in patterns at nine of the 
14 sites in NW2. The sites with altered flow regulation at dams included 
the Upper Skagit River site downstream of Ross Dam, the McKenzie 
River site downstream of multiple dams on the river and its tributaries, 
the White Salmon River site downstream of Condit Dam until its removal 
in 2011, and the Trinity River site downstream of Trinity and Lewiston 
dams. Second, local patterns with finer-scale processes than those of 
teleconnections could relate to varied hydrogeology. The spatial het-
erogeneity within the Intermountain West (i.e., between the Cascade 
Range/Sierra Nevada and the Rocky Mountains) is characterized by 
diverse terrains and varied topography that can influence the expression 
of climatic processes occurring in the atmosphere and at the surface 
(Wise et al., 2015; Heyer et al., 2017). Particular small-scale controls on 
precipitation patterns include elevation and aspect. High-elevation sites 
tend to have more precipitation, while aspect influences the incoming 
direction of the air and hence precipitation. Thus, the large-scale ocean 
and atmospheric processes on climate in the region are further influ-
enced by variations at the small scale. For example, weaker correlations 

between ENSO (or SST in the Niño 3.4 region) and precipitation in the 
Snake River Basin has been observed (Heyer et al., 2017). Although our 
case study of the lower Salmon River showed correlations between 
freshwater and marine/climate indices, these correlations were not 
apparent for the upper Salmon River site. Third, at the dam-free sites, 
noisy data may relate to processes we did not examine explicitly. For 
example, the south Umpqua River and the lower Sauk River had mean 
10-year correlations between seasonal mean flows and spring–summer 
PDO nearing zero with variances > 0.2. Overall, even if we did not 
identify why there was a lack of correlation between freshwater and 
marine/climate indices, determining whether or not such correlations 
exist has implications on how they can be interpreted as indices of 
salmon responses. 

4.3.4. As data quality improves 
Determining which ecological processes are important to survival at 

different life stages and how they can be represented with existing data 
remains a challenge. Undoubtedly, we expect more and better quality 
environmental data to become available over time (e.g., improvements 
on remotely sensed satellite data and extended reconstructed sea surface 
temperature data). Yet, ecologists will still need to decide which indices 
best represent the ecological processes and which of these among the 
correlated ones to test against migratory animal population indicators. 
We could examine all indices of interest through separate models and 
then combine the predictions through techniques such as model aver-
aging; however, there are limitations rooted in such statistical tech-
niques (Banner and Higgs, 2017). Grounding our analyses with an 
understanding of biological and ecological processes will provide the 
needed realism. 

As a case in point worth noting, our result of more unique informa-
tion in freshwater than marine and climate indices does not necessarily 
equate proportionally to its importance. This result may reflect our 
limited knowledge of where salmon occur in the coastal and open ocean 
compared to the myriad of known freshwater habitats and microhabitats 
(Hurst, 2007). It may also be because of greater synchronization of 
physical processes in the ocean compared to those of rivers in a complex 
topography. Either way, it is important to at least uncover the correla-
tion structure among indices to provide context on which ones may be 
unique or interchangeable for hypothesis testing. 

4.4. Conclusion 

Our paper provides an entryway to a wider perspective on the 
interrelatedness of freshwater, marine, and climate conditions. An un-
derstanding of these relationships will help investigators choose and use 
indices of migratory animal population indicators. One important rela-
tionship is how teleconnections explain Northwest/Southwest regional 
patterns of correlations among environmental indices (Fig. 10a). In the 
Northwest, large-scale marine/climate indices can summarize multiple 
local indices of temperature and flow. In the Southwest, the correlations 
that occur among marine/climate indices, among flow indices, and be-
tween coastal marine and flow indices are important to consider. 
Whether to select indices that are correlated or not for further investi-
gation with animal responses will be an important decision. The context 
of a climate-centric (e.g., pre-conditioning of environment) and 
organism-centric (e.g., cross-life-stage effects) perspectives will be 
notable in decisions of which indices to select and how to interpret their 
potential influences on animal responses. 

The more subtle nuances within clusters of sites and across diverse 
sites could be better understood by superimposing influences from 
multiple teleconnections (e.g., from Niño 3.4 and PDO indices), in-phase 
vs. out-of-phase phenomena, local hydrogeologic processes, and 
anthropogenic practices (Fig. 10b). Even within just the marine-climate 
correlations, understanding their changing relationships can be impor-
tant to environmentally-based stock assessment of marine fish, such as 
groundfish and herring recruitment (Litzow and Mueter, 2014; Litzow 
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et al., 2014). The frequent changes in correlations underscore the 
importance of long-term data sets and continued monitoring across 
habitats of migratory animals. Time series in ecology are often assumed 
to have a constant mean and variance for analysis. However, changes in 
correlations among multiple indices occur over time. Identifying periods 
of higher and weaker correlations will be important in making in-
ferences regarding salmon population indicators across climate phases 
(i.e., periods when relevant climate indices are in-phase or out-of-phase, 
and their direction of change). As the climate continues to change, it 
becomes more evident that maintaining a mindset encompassing static 
processes limits our abilities to explain patterns among environmental 
indices. This recognition in the context of multiple climatic tele-
connections will help foster the development and utility of more resil-
ient methodological approaches that account for changing correlations. 
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